Affordable Access

Active control of slow light on a chip with photonic crystal waveguides.

Authors
  • Vlasov, Yurii A
  • O'Boyle, Martin
  • Hamann, Hendrik F
  • McNab, Sharee J
Type
Published Article
Journal
Nature
Publisher
Springer Nature
Publication Date
Nov 03, 2005
Volume
438
Issue
7064
Pages
65–69
Identifiers
PMID: 16267549
Source
Medline
License
Unknown

Abstract

It is known that light can be slowed down in dispersive materials near resonances. Dramatic reduction of the light group velocity-and even bringing light pulses to a complete halt-has been demonstrated recently in various atomic and solid state systems, where the material absorption is cancelled via quantum optical coherent effects. Exploitation of slow light phenomena has potential for applications ranging from all-optical storage to all-optical switching. Existing schemes, however, are restricted to the narrow frequency range of the material resonance, which limits the operation frequency, maximum data rate and storage capacity. Moreover, the implementation of external lasers, low pressures and/or low temperatures prevents miniaturization and hinders practical applications. Here we experimentally demonstrate an over 300-fold reduction of the group velocity on a silicon chip via an ultra-compact photonic integrated circuit using low-loss silicon photonic crystal waveguides that can support an optical mode with a submicrometre cross-section. In addition, we show fast (approximately 100 ns) and efficient (2 mW electric power) active control of the group velocity by localized heating of the photonic crystal waveguide with an integrated micro-heater.

Report this publication

Statistics

Seen <100 times