Activation cross sections of proton induced reactions on bismuth in the energy range 73–100 MeV
- Authors
- Type
- Published Article
- Journal
- The European Physical Journal A
- Publisher
- Springer Berlin Heidelberg
- Publication Date
- Feb 04, 2022
- Volume
- 58
- Issue
- 2
- Identifiers
- DOI: 10.1140/epja/s10050-022-00674-1
- Source
- Springer Nature
- Disciplines
- License
- Yellow
Abstract
Cross sections of the 209Bi(p,x)200Pb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^{209}Bi(p, x)^{200}Pb}$$\end{document}, 209Bi(p,x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^{209}Bi(p, x)}$$\end{document}203,204,205,206,207Bi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^{203,204,205,206,207}Bi}$$\end{document} and 209Bi(p,x)204,205,206,207Po\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^{209}Bi(p, x)^{204,205,206,207}Po}$$\end{document} reactions were measured with the activation technique and off-line gamma spectrometry between 73 and 100 MeV at separated sector cyclotron of the Heavy Ion Research Facility in Lanzhou. Proton beam intensities were determined by using natNi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^{nat}Ni}$$\end{document}(p,x)57Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{(p, x)^{57}Ni}$$\end{document} and 27Al(p,x)22Na\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^{27}Al(p, x)^{22}Na}$$\end{document} monitor reactions. Our experiment results are consistent with the experimental data of previous work from EXFOR library. Besides, theoretical result of TALYS-1.95 code with default models and evaluated nuclear data of the ENDF/B-VIII.0, PADF-2007 and JENDL-4.0/HE libraries were compared with experimental values. The results showed that evaluated nuclear data and theoretical calculations in general demonstrate good trend, but frequently underestimate or overestimate the excitation functions compared to experimental values. And the prediction ability of TALYS-1.95 code with default models become weaker if more nucleons emitting from the atomic nucleus.