Affordable Access

Access to the full text

The action of the Virasoro algebra in the two-dimensional Potts and loop models at generic Q

Authors
  • Grans-Samuelsson, Linnea1
  • Liu, Lawrence2
  • He, Yifei1
  • Jacobsen, Jesper Lykke1, 3, 4, 5
  • Saleur, Hubert1, 2
  • 1 Institut de Physique Théorique, Gif-sur-Yvette, 91191, France , Gif-sur-Yvette (France)
  • 2 University of Southern California, Los Angeles, CA, 90089-0484, USA , Los Angeles (United States)
  • 3 Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France , Paris (France)
  • 4 École Normale Supérieure, CNRS, Laboratoire de Physique (LPENS), Paris, 75005, France , Paris (France)
  • 5 Université Paris Saclay, CNRS, Le Bois-Marie, 35 route de Chartres, Bures-sur-Yvette, F-91440, France , Bures-sur-Yvette (France)
Type
Published Article
Journal
Journal of High Energy Physics
Publisher
Springer-Verlag
Publication Date
Oct 16, 2020
Volume
2020
Issue
10
Identifiers
DOI: 10.1007/JHEP10(2020)109
Source
Springer Nature
Keywords
License
Green

Abstract

The spectrum of conformal weights for the CFT describing the two-dimensional critical Q-state Potts model (or its close cousin, the dense loop model) has been known for more than 30 years [1]. However, the exact nature of the corresponding Vir ⊗ Vir¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{Vir}} $$\end{document} representations has remained unknown up to now. Here, we solve the problem for generic values of Q. This is achieved by a mixture of different techniques: a careful study of “Koo-Saleur generators” [2], combined with measurements of four-point amplitudes, on the numerical side, and OPEs and the four-point amplitudes recently determined using the “interchiral conformal bootstrap” in [3] on the analytical side. We find that null-descendants of diagonal fields having weights (hr,1, hr,1) (with r ∈ ℕ*) are truly zero, so these fields come with simple Vir ⊗ Vir¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{Vir}} $$\end{document} (“Kac”) modules. Meanwhile, fields with weights (hr,s, hr,−s) and (hr,−s, hr,s) (with r, s ∈ ℕ*) come in indecomposable but not fully reducible representations mixing four simple Vir ⊗ Vir¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\mathrm{Vir}} $$\end{document} modules with a familiar “diamond” shape. The “top” and “bottom” fields in these diamonds have weights (hr,−s, hr,−s), and form a two-dimensional Jordan cell for L0 and L¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{L}}_0 $$\end{document}. This establishes, among other things, that the Potts-model CFT is logarithmic for Q generic. Unlike the case of non-generic (root of unity) values of Q, these indecomposable structures are not present in finite size, but we can nevertheless show from the numerical study of the lattice model how the rank-two Jordan cells build up in the infinite-size limit.

Report this publication

Statistics

Seen <100 times