Affordable Access

Access to the full text

Accretion and Structure of Radiating Disks

Authors
  • Mach, Patryk
  • Malec, Edward
Type
Preprint
Publication Date
Apr 18, 2012
Submission Date
Oct 07, 2010
Identifiers
DOI: 10.1051/0004-6361/201015755
Source
arXiv
License
Yellow
External links

Abstract

We studied a steadily accreting, geometrically thick disk model that selfconsistently takes into account selfgravitation of the polytropic gas, its interaction with the radiation and the mass accretion rate. The accreting mass is injected inward in the vicinity of the central $z=0$ plane, where also radiation is assumed to be created. The rest of the disk remains approximately stationary. Only conservation laws are employed and the gas-radiation interaction in the bulk of the disk is described in the thin-gas approximation. We demonstrate that this scheme is numerically viable and yields a structure of the bulk that is influenced by the radiation and (indirectly) by the prescribed mass accretion rate. The obtained disk configurations are typical for environments in Active Galactic Nuclei (AGN), with the central mass of the order of $10^7 M_{\astrosun}$ to $10^8 M_{\astrosun}$, quasi-Keplerian rotation curves, disk masses ranging from about $10^6 M_{\astrosun}$ to $10^7 M_{\astrosun}$, and the luminosity ranging from $10^6 L_{\astrosun}$ to $10^9 L_{\astrosun}$. These luminosities are much lower than the corresponding Eddington limit.

Report this publication

Statistics

Seen <100 times