Affordable Access

Publisher Website

Comparison of the Conformational Stability of the Molten Globule and Native States of Horse Cytochromec:Effects of Acetylation, Heat, Urea and Guanidine-Hydrochloride

Authors
Journal
Journal of Molecular Biology
0022-2836
Publisher
Elsevier
Publication Date
Volume
237
Issue
3
Identifiers
DOI: 10.1006/jmbi.1994.1234
Keywords
  • Cytochromec
  • Molten Globule
  • Protein Folding
  • Denaturation
  • Electrostatics
Disciplines
  • Biology

Abstract

Abstract The molten globule state has been assumed to be a major intermediate of protein folding. We compared the stability of the native and acidic molten globule states of horse ferricytochrome c against heat, urea and guanidine hydrochloride (Gdn-HCl) using the intact species and species modified by various degrees of acetylation of the lysyl ε-amino groups. After acetylation, the amino groups cannot protonate at acidic pH. Thermal and urea-induced unfolding transitions measured by far-UV circular dichroism and differential scanning calorimetry showed that, whereas acetylation stabilizes the molten globule state at pH 2, it destabilizes the native state at pH 7, suggesting a difference in their mechanisms of conformational stability. On the other hand, the effects of Gdn-HCl were remarkable. Contrary to what was expected from the thermal and urea-induced unfolding transitions, the Gdn-HCl-induced unfolding transition of the native state at pH 7 was insensitive to the extent of acetylation. At pH 2, Gdn-HCl at low concentrations stabilized the molten globule state and, at high concentrations, destabilized it. Consideration of the difference in the effects of Gdn-HCl from those of urea or heat indicated that, whereas the net positive charge repulsion destabilizes the molten globule state at pH 2, the local negative charge repulsion produced by acetylation of amino groups, and not the net charge, critically destabilizes the native state at pH 7. These results predict that, because of its ionic nature, Gdn-HCl will produce substantially different effects on the conformational states of some proteins compared with those of urea.

There are no comments yet on this publication. Be the first to share your thoughts.