Affordable Access

Absence of ligands bound to glycoprotein IIB-IIIA on the exposed surface of a thrombus may limit thrombus growth in flowing blood.

Authors
  • H F Heynen
  • M Lozano Molero
  • P G de Groot
  • H K Nieuwenhuis
  • J J Sixma
Publication Date
Sep 01, 1994
Source
PMC
Keywords
Disciplines
  • Biology
License
Unknown

Abstract

We examined the distribution of glycoprotein IIb-IIIa (GPIIb-IIIa) and its ligands fibrinogen and von Willebrand factor (vWf) on platelets which had adhered under flow conditions. Immunoelectron microscopy was performed on whole mounts and frozen thin sections of adhering platelets. GPIIb-IIIa was homogeneously distributed on dendritic platelets and on interplatelet membranes of formed thrombi. Fibrinogen and vWf were predominantly associated with interplatelet membranes and membranes facing the substrate. On whole mounts, vWf appeared in clumps and linear arrays, representing the tangled or extended forms of the multimeric molecule. From semiquantitative analysis, it appeared that fibrinogen and vWf were, respectively, nine- and fourfold higher on interplatelet membranes than on surface membranes facing the blood stream, while GPIIb-IIIa was evenly distributed over all platelet plasma membranes. Ligand-induced binding sites (LIBS) of GPIIb-IIIa, as measured with conformation specific monoclonal antibodies RUU 2.41 and LIBS-1, were present on the surface of adhered platelets and thrombi. A redistribution of LIBS-positive forms of GPIIb-IIIa towards interplatelet membranes was not observed. Our data support the hypothesis that, under flow conditions, ligands have first bound to activated GPIIb-IIIa but this binding is reversed on the upper surface of adhering platelets. This relative absence of ligands on the exposed surface of thrombi may play a role in limiting their size.

Report this publication

Statistics

Seen <100 times