Affordable Access

Enzymatic conversion of all-trans-beta-carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa.

Authors
Publication Date
Source
PMC
Keywords
  • Research Article
Disciplines
  • Biology

Abstract

Enzymatic conversion of all-trans-beta-carotene to retinal by a partially purified enzyme from rabbit and rat intestinal mucosa was demonstrated. The enzymatic product was characterized based on the following evidence: (i) The product gave rise to its O-ethyloxime by treatment with O-ethylhydroxylamine with an absorption maximum at 363 nm in ethanol characteristic of authentic retinal O-ethyloxime. High-pressure liquid chromatography (HPLC) of this derivative yielded a sharp peak with a retention time of 7.99 min corresponding to the authentic compound. The enzyme blank and boiled enzyme blank failed to show any significant HPLC peaks corresponding to retinal O-ethyloxime, retinal, or retinol. (ii) The mass spectrum of the O-ethyloxime of the enzymatic product was identical to that of authentic retinal O-ethyloxime (m/z 327: 45%, M+. and m/z 282: 100%, M--ethoxy). (iii) The specific activity of the enzymatically formed [14C]retinal O-ethyloxime remained constant even after repeated crystallization. (iv) The enzymatic product exhibited an absorption maximum at 370 nm in light petroleum characteristic of authentic retinal. Furthermore, it was reduced by horse liver alcohol dehydrogenase to retinol with an absorption maximum at 326 nm in light petroleum. This retinol was enzymatically esterified to retinyl palmitate by rat pancreatic esterase with a retention time of 10 min on HPLC corresponding to authentic retinyl palmitate. Thus, the enzymatic product of beta-carotene cleavage by the partially purified intestinal enzyme was unequivocally confirmed to be retinal.

There are no comments yet on this publication. Be the first to share your thoughts.