Affordable Access

A Class of Numerical Methods for the Solution of Fourth-Order Ordinary Differential Equations in Polar Coordinates

Authors
Publisher
Advances in Numerical Analysis
Publication Date
Disciplines
  • Mathematics

Abstract

In this piece of work using only three grid points, we propose two sets of numerical methods in a coupled manner for the solution of fourth-order ordinary differential equation 𝑢 𝑖 𝑣 ( 𝑥 ) = 𝑓 ( 𝑥 , 𝑢 ( 𝑥 ) , 𝑢  ( 𝑥 ) , 𝑢   ( 𝑥 ) , 𝑢    ( 𝑥 ) ) , 𝑎 < 𝑥 < 𝑏 , subject to boundary conditions 𝑢 ( 𝑎 ) = 𝐴 0 , 𝑢  ( 𝑎 ) = 𝐴 1 , 𝑢 ( 𝑏 ) = 𝐵 0 , and 𝑢  ( 𝑏 ) = 𝐵 1 , where 𝐴 0 , 𝐴 1 , 𝐵 0 , and 𝐵 1 are real constants. We do not require to discretize the boundary conditions. The derivative of the solution is obtained as a byproduct of the discretization procedure. We use block iterative method and tridiagonal solver to obtain the solution in both cases. Convergence analysis is discussed and numerical results are provided to show the accuracy and usefulness of the proposed methods.

There are no comments yet on this publication. Be the first to share your thoughts.