Affordable Access

Dynamic expression of a glutamate decarboxylase gene in multiple non-neural tissues during mouse development

Authors
Publisher
BioMed Central
Publication Date
Source
PMC
Keywords
  • Research Article
Disciplines
  • Biology

Abstract

1471-213X-1-1.fm BMC Developmental Biology (2001) 1:1 http://www.biomedcentral.com/1471-213X/1/1 BMC Developmental Biology (2001) 1:1Research article Dynamic expression of a glutamate decarboxylase gene in multiple non-neural tissues during mouse development Dennis M Maddox 1 and Brian G Condie 2 Address: 1Institute of Molecular Medicine and Genetics, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, USA and 2Institute of Molecular Medicine and Genetics, Departments of Medicine and Cellular Biology and Anatomy, Medical College of Georgia, Augusta, USA E-mail: Dennis M Maddox - [email protected] Brian G Condie - [email protected] Abstract Background: Glutamate decarboxylase (GAD) is the biosynthetic enzyme for the neurotransmitter γ-aminobutyric acid (GABA). Mouse embryos lacking the 67-kDa isoform of GAD (encoded by the Gad1 gene) develop a complete cleft of the secondary palate. This phenotype suggests that this gene may be involved in the normal development of tissues outside of the CNS. Although Gad1 expression in adult non-CNS tissues has been noted previously, no systematic analysis of its embryonic expression outside of the nervous system has been performed. The objective of this study was to define additional structures outside of the central nervous system that express Gad1, indicating those structures that may require its function for normal development. Results: Our analysis detected the localized expression of Gad1 transcripts in several developing tissues in the mouse embryo from E9.0-E14.5. Tissues expressing Gad1 included the tail bud mesenchyme, the pharyngeal pouches and arches, the ectodermal placodes of the developing vibrissae, and the apical ectodermal ridge (AER), mesenchyme and ectoderm of the limb buds. Conclusions: Some of the sites of Gad1 expression are tissues that emit signals required for patterning and differentiation (AER, vibrissal placodes). Other sites correspond to proliferating stem cell populations

There are no comments yet on this publication. Be the first to share your thoughts.