Affordable Access

Publisher Website

Improvement of emulsifying properties of Maillard reaction products from β-conglycinin and dextran using controlled enzymatic hydrolysis

Authors
Journal
Food Hydrocolloids
0268-005X
Publisher
Elsevier
Volume
28
Issue
2
Identifiers
DOI: 10.1016/j.foodhyd.2012.01.006
Keywords
  • β-Conglycinin
  • Dextran
  • Conjugates
  • Enzymatic Hydrolysis
  • Emulsifying Properties
  • Hydrolysates
Disciplines
  • Biology
  • Chemistry

Abstract

Abstract A novel emulsifier was prepared by conjugating soy β-conglycinin and dextran (MW 67 kDa) under dry-heated Maillard reaction followed by trypsin hydrolysis with the degree of hydrolysis (DH) at 2.2% and 6.5%. The emulsifying properties of β-conglycinin, β-conglycinin–dextran conjugates and hydrolysates of β-conglycinin–dextran conjugates (DH 2.2% and DH 6.5%) were investigated using zeta-potential, droplet size and creaming index of the emulsions. The results showed that hydrolysates of β-conglycinin–dextran conjugates (DH 2.2%) were capable of forming a fine emulsion (d43 = 0.62 ± 0.04 μm, pH 7.0) which remained stable during 4 weeks of storage. A variety of physicochemical and interfacial properties of β-conglycinin, β-conglycinin–dextran conjugates and hydrolysates of β-conglycinin–dextran conjugates were investigated. Hydrolysates of β-conglycinin–dextran conjugates (DH 2.2%) had a much higher fraction of protein adsorption (Fads) and a significantly lower saturation surface load (Γsat) compared with β-conglycinin, β-conglycinin–dextran conjugates and hydrolysates of β-conglycinin–dextran conjugates (DH 6.5%). This might be due to its higher molecular flexibility, which benefited the adsorption and unfolding of peptide molecules at the droplet interface. These might explain its markedly improved emulsifying capability. The conjugation of β-conglycinin and dextran effectively enhanced the hydrophilicity of the oil droplets surfaces and improved the steric repulsion between the oil droplets. Therefore the emulsions were still stable after 4 weeks of storage against pH, ionic strength and thermal treatment. This study demonstrated that controlled enzymatic hydrolysis of protein–polysaccharide conjugates could be an effective method for preparing favourable emulsifiers.

There are no comments yet on this publication. Be the first to share your thoughts.