Affordable Access

Publisher Website

Adenosine Transporter ENT4 Is a Direct Target of EWS/WT1 Translocation Product and Is Highly Expressed in Desmoplastic Small Round Cell Tumor

Authors
Journal
PLoS ONE
1932-6203
Publisher
Public Library of Science
Publication Date
Volume
3
Issue
6
Identifiers
DOI: 10.1371/journal.pone.0002353
Keywords
  • Research Article
  • Biochemistry/Transcription And Translation
  • Molecular Biology/Transcription Initiation And Activation
  • Oncology/Sarcomas
Disciplines
  • Biology
  • Medicine

Abstract

Background Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive malignancy that affects mainly adolescents and young adults. A defining characteristic of DSRCT is a specific chromosomal translocation, t(11;22)(p13;q12), that fuses EWS with WT1, leading to a production of two isoforms of chimeric transcription factor, EWS/WT1(−KTS) and EWS/WT1(+KTS). The chimeric proteins are thought to play critical roles in various stages of oncogenesis through aberrant transcription of different genes, but only a few of these genes have been identified. Methodology/Principal Findings We report the identification of a new target of EWS/WT1, ENT4 (equilibrative nucleoside transporter 4) which encodes a pH-dependent adenosine transporter. ENT4 is transcriptionally activated by both isoforms of EWS/WT1 as evidenced by promoter-reporter and chromatin immunoprecipitation (ChIP) analyses. Furthermore, ENT4 is highly and specifically expressed in primary tumors of DSRCT as well as in a DSRCT cell line, JN-DSRCT-1. Treatment of JN-DSRCT-1 cells with adenosine analogs, such as 2-chloro-2′-deoxyadenosine (2-CdA), resulted in an increased cytotoxic response in dose- and pH-dependent manner. Conclusions/Significance Our detailed analyses of a novel target of EWS/WT1 in DSRCT reveal an insight into the oncogenic mechanism of EWS-fusion chromosomal translocation gene products and provide a new marker for DSRCT. Furthermore, identification of ENT4 as a highly expressed transcript in DSRCT may represent an attractive pathway for targeting chemotherapeutic drugs into DSRCT.

There are no comments yet on this publication. Be the first to share your thoughts.