Affordable Access

Pharmacologic characterization of the Na+ ionophores in L6 myotubes.

Publication Date
  • Research Article
  • Biology
  • Pharmacology


We present a pharmacologic characterization of the Na+ ionophores present in L6 myotubes in vitro. Action potentials are abolished by replacement of the external Na+ by Tris. The amplitude of the action potential is generally resistant to high concentrations of tetrodotoxin (10(-5) M) and saxitoxin (10(-6 M), but the effect of these agents is highly variable. Veratridine (10(-4 M) consistently induces, as a short-term effect, a marked prolongation of the falling phase of the action potential. As a long-term effect, veratridine consistently induces a Na+-dependent reduction in the resting potential of the cell. The effects of veratridine on the action potential are not antagonized by tetrodotoxin or saxitoxin. However, the effects of veratridine on the resting potential are strongly antagonized by tetrodotoxin (10(-5) M) and fully inhibited by saxitoxin (10(-6) M). Significantly, under conditions where saxitoxin has fully inhibited the effects of veratridine on the resting potential, the myotubes are capable of generating overshooting action potentials. In contrast to their sensitivity to veratridine, L6 myotubes are insensitive to 10(-5) M alpha-dihydro-grayanotoxin-II. These results are discussed in the contexts of developmental significance and current views about Na+ ionophores.

There are no comments yet on this publication. Be the first to share your thoughts.