Affordable Access

Publisher Website

Ethylene-regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability inActinidia chinensisgenotypes

Authors
Journal
Journal of Plant Physiology
0176-1617
Publisher
Elsevier
Publication Date
Volume
168
Issue
7
Identifiers
DOI: 10.1016/j.jplph.2010.10.001
Keywords
  • Actinidia Chinensis
  • Alcohol Acyltransferase
  • Apparent Catalytic Efficiency
  • Ethylene Metabolism
  • Sulfur-Volatiles
Disciplines
  • Biology

Abstract

Abstract The limiting steps of ethylene-dependent (methylsulfanyl)alkanoate ester biosynthesis have been investigated in this study, using closely related Actinidia chinensis genotypes and the commercial cultivar ‘Hort16A’. Quantification of methylsulfanyl-compounds from the headspace of ethylene-producing kiwifruits revealed little variation in their volatile composition but remarkable differences in the magnitude of the fruit volatile levels. To test whether the variations in fruit volatile levels can be correlated with the genotype-specific apparent catalytic efficiency, the initial slope of the substrate response curve ( V′ Max K M −1 where V′ Max is the apparent V Max in a crude extract) was evaluated for total alcohol acyltransferase (EC 2.3.1.84) activity. The V′ Max K M −1 values of different (methylsulfanyl)alkyl-CoAs were in a similar range for most genotypes, which suggests substrate availability as the limiting factor for (methylsulfanyl)alkanoate ester synthesis in these kiwifruit. Furthermore, gene expression analysis of acyltransferase expressed sequence tags points towards the action of multiple isozymes for (methylsulfanyl)alkanoate ester synthesis, emphasizing the central role of substrate levels on final ester concentrations. Volatile levels of the potential precursor methional were increased in ethylene-producing A. chinensis kiwifruit and a close connection between (methylsulfanyl)alkanoate ester formation and ethylene synthesis in plants is proposed. Finally, a possible biosynthetic pathway is presented.

There are no comments yet on this publication. Be the first to share your thoughts.