Affordable Access

Generalized linear mixed models for binary outcome data with a low proportion of occurrences

Authors
Publisher
McGill University
Publication Date
Keywords
  • Biology - Biostatistics
Disciplines
  • Biology
  • Medicine
  • Social Sciences

Abstract

Plusieurs études en épidémiologie et autres domaines, tels que les sciences sociales, donnent lieu à des données de réponse corrélées (par exemple, les études longitudinales et multi-centres). L'estimation des paramètres des modèles linéaires généralisés mixtes (MLGM), souvent utilisés pour les données de réponse corrélées, est compliquée par des intégrales sans solution analytique dans la fonction de vraisemblance marginale. La méthode de quasi-vraisemblance pénalisée (QVP) et l'estimation par la maximisation de la vraisemblance conjointement avec la technique d'intégration numérique de quadrature Gauss-Hermite adaptée (QGHA) sont souvent utilisées. Cependant, l'évaluation de la performance de ces méthodes en pratique est incomplète, en particulier pour les données de réponse binaires avec faible proportion d'événements.

There are no comments yet on this publication. Be the first to share your thoughts.