Affordable Access

Extracting Focused Knowledge from the Semantic Web

Publication Date
  • Computer Science
  • Design
  • Linguistics
  • Logic


Ontologies are increasingly being recognized as a critical component in making networked knowledge accessible. Software architectures which can assemble knowledge from networked sources coherently according to the requirements of a particular task or perspective will be at a premium in the next generation of web services. We argue that the ability to generate task-relevant ontologies efficiently and relate them to web resources will be essential for creating a machine-inferencable "semantic web". The Internet-based multi-agent problem solving (IMPS) architecture described here is designed to facilitate the retrieval, restructuring, integration and formalization of task-relevant ontological knowledge from the web. There are rich structured and semi-structured sources of knowledge available on the web that present implicit or explicit ontologies of domains. Knowledge-level models of tasks have an important role to play in extracting and structuring useful focused problem-solving knowledge from these web sources. IMPS uses a multi-agent architecture to combine these models with a selection of web knowledge extraction heuristics to provide clean syntactic integration of ontological knowledge from diverse sources and support a range of ontology merging operations at the semantic level. Whilst our specific aim is to enable on-line knowledge acquisition from web sources to support knowledge-based problem solving by a community of software agents encapsulating problem-sloving inferences, the techniques described here can be applied to more general task-based integration of knowledge from diverse web sources, and the provision of services such as the critical comparison, fusion, maintenance and update of both formal informal ontologies.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times