Affordable Access

Download Read

Two-dimensional transport and transfer of a single atomic qubit in optical tweezers.

Nature Publishing Group


Quantum computers have the capability of out-performing their classical counterparts for certain computational problems1. Several scalable quantum-computing architectures have been proposed. An attractive architecture is a large set of physically independent qubits arranged in three spatial regions where (1) the initialized qubits are stored in a register, (2) two qubits are brought together to realize a gate and (3) the readout of the qubits is carried out2, 3. For a neutral-atom-based architecture, a natural way to connect these regions is to use optical tweezers to move qubits within the system. In this letter we demonstrate the coherent transport of a qubit, encoded on an atom trapped in a submicrometre tweezer, over a distance typical of the separation between atoms in an array of optical traps4, 5, 6. Furthermore, we transfer a qubit between two tweezers, and show that this manipulation also preserves the coherence of the qubit.

There are no comments yet on this publication. Be the first to share your thoughts.