Affordable Access

Publisher Website

Effects of Stronach Dam removal on fluvial geomorphology in the Pine River, Michigan, United States

Publication Date
DOI: 10.1016/j.geomorph.2009.03.019
  • Dam Removal
  • Sediment Incision
  • Sediment Deposition
  • Fluvial Processes
  • Impoundment
  • Channel Evolution
  • Earth Science


Abstract Although dam removal has been increasingly used as an option in dam management, and as a river restoration tool, few studies provide detailed quantitative assessment of the geomorphological response of rivers to dam removal. In this study, we document the response of the Pine River, Michigan, to the gradual removal of Stronach Dam. In 1996, prior to the initiation of removal, 31 permanent cross-sectional transects were established in the 10-km study area. These transects were surveyed annually during the course of the removal (1996–2003) and for the three years following removal (2004–2006). Dam removal resulted in progressive headcutting of sediments in the former impoundment, extending upstream 3.89 km of the dam. Over the course of the 10 years since dam removal was initiated, a net total of 92 000 m 3 of sediment erosion occurred. The majority of sediments stored in the former reservoir remained in place, with only 12% of the estimated reservoir sediment fill being eroded. Approximately 14% of the net erosion was deposited within the stream channel 1 km downstream of the dam location, with the remainder being transported further downstream or deposited in the floodplain. Sediment fill incision resulted in a narrower and deeper channel upstream, with higher mean water velocity and somewhat coarser substrates. Downstream deposition resulted in a wider and shallower channel, with little change in substrate size composition. Counter-intuitively, water velocity also increased downstream because of the increased slope that developed. Prior to removal, bedforms in the former impoundment were dominated by runs but are showing signs of restoration toward reference conditions. Continuing changes in river geomorphology are evident even three years following removal and are likely to occur for years to come.

There are no comments yet on this publication. Be the first to share your thoughts.