Affordable Access

Disordered carbon nanofibers/LiCoPO4 composites as cathode materials for lithium ion batteries

Publication Date
  • Chemistry


Single-phase LiCoPO4 nanoparticles were synthesized by solid-state reaction method and subsequent high-energy ball milling. The electrochemical properties of LiCoPO4/Li batteries were analyzed by ac impedance experiments, cyclic voltammetry (CV), and charge/discharge tests. The structural and morphological performance of LiCoPO4 nanoparticles was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The XRD result demonstrated that LiCoPO4 nanoparticles had an orthorhombic olivine-type structure with a space group of Pmnb. Different conductive additives including acetylene black and carbon black (SP270) were used to fabricate electrodes. The morphologies of the electrodes and different conductive additives were observed by field emission-scanning electron microscopy (FE-SEM). LiCoPO4/Li battery with acetylene black showed the best electrochemical properties, and exhibited a discharge plateau at around 4.7 V with an initial discharge capacity of 110 mAh g−1 at a discharge current density of 0.05 mA cm−2 at 25 °C.

There are no comments yet on this publication. Be the first to share your thoughts.