Affordable Access

Publisher Website

Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases

PLoS Pathogens
Public Library of Science
Publication Date
DOI: 10.1371/journal.ppat.1000559
  • Research Article
  • Cell Biology/Cell Signaling
  • Immunology/Leukocyte Activation
  • Immunology/Leukocyte Signaling And Gene Expression
  • Infectious Diseases/Protozoal Infections
  • Infectious Diseases/Tropical And Travel-Associated Diseases
  • Biology
  • Pharmacology


The intraerythrocytic parasite Plasmodium—the causative agent of malaria—produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1β (IL-1β). However, the mechanism regulating Hz recognition and IL-1β maturation has not been identified. Here, we show that Hz induces IL-1β production. Using knockout mice, we showed that Hz-induced IL-1β and inflammation are dependent on NOD-like receptor containing pyrin domain 3 (NLRP3), ASC and caspase-1, but not NLRC4 (NLR containing CARD domain). Furthermore, the absence of NLRP3 or IL-1β augmented survival to malaria caused by P. chabaudi adami DS. Although much has been discovered regarding the NLRP3 inflammasome induction, the mechanism whereby this intracellular multimolecular complex is activated remains unclear. We further demonstrate, using pharmacological and genetic intervention, that the tyrosine kinases Syk and Lyn play a critical role in activation of this inflammasome. These findings not only identify one way by which the immune system is alerted to malarial infection but also are one of the first to suggest a role for tyrosine kinase signaling pathways in regulation of the NLRP3 inflammasome.

There are no comments yet on this publication. Be the first to share your thoughts.