Affordable Access

A novel electron paramagnetic resonance spin label and its application to study the cross-bridge cycle.

Authors
  • D Raucher
  • E A Fajer
  • C Sár
  • K Hideg
  • Y Zhao
  • M Kawai
  • P G Fajer
Publication Date
Apr 01, 1995
Source
PMC
Keywords
License
Unknown

Abstract

We have used a novel alpha-iodoketone spin-label (IKSL) to study myosin head orientation and cross-bridge dynamics in the putative pre-powerstroke state. Possible perturbation of the cross-bridge cycle by the label was assayed by the sinusoidal analysis method (Kawai and Brandt, 1980; Kawai and Zhao, 1993), which determines the rate constants of the elementary steps in the cycle. A comparison of the rates obtained from unlabeled and IKSL fibers revealed small (10-20%) changes in the ATP hydrolysis rate and in the rate constants of the elementary steps. The labeling induced small changes (< 13%) in the distribution of the cross-bridges among the various intermediate states. Pre-powerstroke cross-bridges were induced by aluminum fluoride in the presence of Ca2+ and ATP. In this state, force development is inhibited, but a large proportion (40%) of the cross-bridges are still attached to the thin filament. We have used conventional electron paramagnetic resonance to measure orientation, and have found that the pre-powerstroke heads are as disordered as in relaxation. Their mobility, as determined by saturation transfer electron paramagnetic resonance, was significantly restricted. Assuming that stiffness is proportional to the fraction of strongly attached heads, the rotational correlation time of the bound heads is estimated to be tau r = approximately 150-400 microseconds.

Report this publication

Statistics

Seen <100 times