Affordable Access

Publisher Website

Endogenous opioids modulate the effect of cholecystokinin on insulin release in dogs

Authors
Journal
Neuropeptides
0143-4179
Publisher
Elsevier
Publication Date
Volume
4
Issue
6
Identifiers
DOI: 10.1016/0143-4179(84)90094-5
Disciplines
  • Design
  • Medicine

Abstract

Abstract Recently we have demonstrated in dogs and man that endogenous opioids participate in the regulation of pancreatic endocrine function following the ingestion of a meal. Since intestinal hormones such as cholecystokinin (CCK) are also released by the presence of nutrients in the gastrointestinal tract and participate in the postprandial stimulation of pancreatic endocrine function, an interaction between CCK and endogenous opioids seems possible. The present study was designed to examine this further. In a group of 8 conscious dogs the octapeptide of CCK was infused intravenously in its sulfated (CCK-8S) or nonsulfated (CCK-8NS) form and in addition the tetrapeptide of CCK (CCK-4) was given at increasing infusion rates of 50, 200 and 500 pmol/kg·h, respectively. The experiments were performed during a background infusion of saline to assess the effect on basal insulin and during a background infusion of glucose (0.2 g/min) to determine the effects on stimulated insulin release. The effect of endogenous opioids was examined by addition of the opiate-receptor antagonist naloxone. The studies demonstrate that in the basal state CCK-8S has no stimulatory effect on insulin secretion unless naloxone is added indicating that endogenous opioids help to prevent insulin secretion in the absence of elevated glucose levels. During i.v. glucose naloxone reduced the stimulatory effect of CCK-8S at 50 and 200 pmol/kg·h and that of CCK-4 at 50 pmol/kg·h. Infusion of CCK-8S and CCK-4 at 500 pmol/kg·h had no effect on glucose-stimulated insulin levels, however, the addition of naloxone elicited a significant stimulatory effect. These data demonstrate stimulatory as well as inhibitory effects of endogenous opioids depending on the dose of CCK-8 and -4. CCK-8NS reduced glucose-stimulated insulin release already at the lowest dose of 50 pmol/kg·h. This was reversed to a stimulatory effect with the addition of naloxone. These data demonstrate that the interaction between CCK-8 and -4 and endogenous opioids on prestimulated insulin secretion is much more dependent on the dose of CCK — low doses induce stimulatory and high doses inhibitory mechanisms via endogenous opioids. In view of previous in vitro and in vivo studies with exogenously infused opiate-active compounds it might be speculated that increasing doses of CCK elicit a parallel increase in the release of endogenous opioids which might be responsible for some but certainly not all of the effects observed recently for the action of naloxone in the post-prandial state.

There are no comments yet on this publication. Be the first to share your thoughts.