Affordable Access

The relative roles of CO2 and palaeogeography in determining Late Miocene climate: results from a terrestrial model-data comparison

Copernicus Publications
Publication Date
  • F800 Physical And Terrestrial Geographical And Environmental Sciences
  • Mathematics


The Late Miocene (∼11.6–5.3 Ma) palaeorecord provides evidence for a warmer and wetter climate than that of today and there is uncertainty in the palaeo-CO2 record of at least 150 ppmv. We present results from fully coupled atmosphere-ocean-vegetation simulations for the Late Miocene that examine the relative roles of palaeogeography (topography and ice sheet geometry) and CO2 concentration in the determination of Late Miocene climate through comprehensive terrestrial model-data comparisons. Assuming that the data accurately reflects the Late Miocene climate, and that the Late Miocene palaeogeographic reconstruction used in the model is robust, then results indicate that the proxy-derived precipitation differences between the Late Miocene and modern can be largely accounted for by the palaeogeographic changes alone. However, the proxy-derived temperatures differences between the Late Miocene and modern can only begin to be accounted for if we assume a palaeo-CO2 concentration towards the higher end of the range of estimates.

There are no comments yet on this publication. Be the first to share your thoughts.