Affordable Access

Kinetics and molecular mechanisms of the plasma membrane glutamate transport

Authors
Publication Date
Keywords
  • Stofftransport <Biologie>
  • Natriumglutamat <Natrium-L-Glutamat>
  • Patch-Clamp-Methode
  • Kinetik
  • Temperatur
  • Ddc:570

Abstract

In dieser Arbeit wurden die neuronalen Glutamattransporter EAAT4 (Excitatory Amino Acid Transporter) und EAAT3 in einem HEK (Human Embryonic Kidney) Zellsystem untersucht, in dem die Transporter transient exprimiert wurden. Diese Proteine katalysieren den Transport von Glutamat entgegen des Konzentrationsgradienten aus dem Extrazellulärraum in das Zytosol. Die Energie des Transports, stammt aus dem Kotransport von Natriumionen und Protonen und dem Gegentransport von Kaliumionen. Für EAAT3 ist bekannt, dass das Verhältnis 3 Na+:1 H+:1 Glutamat:1 K+ beträgt, wodurch 2 positive Ladungen pro Transportzyklus verschoben werden. Das führt zu einem messbaren positiven Einwärtststrom. Dieser Strom ist für EAAT4 wesentlich schwächer und die Stöchiometrie ist unbekannt. Beide Proteine besitzen eine Anionenkanaleigenschaft, die bei der Bindung von Na+ und der Bindung von Glutamat voll aktiviert wird. Diese Eigenschaft ist bei EAAT4 besonders ausgeprägt. Die Transporter wurden in Abhängigkeit von verschiedenen intra- und extrazellulären Ionen- und Substratkompositionen, sowie bestimmter Potentialen und der Temperatur elektrophysiologisch charakterisiert. Die Charakterisierung der stationären Eigenschaften des wenig bekannten Transporters EAAT4 brachten Erkenntnisse zu Tage, die 1) Klarheit über die apparenteAffinitäten der Substrate, insbesondere Glutamat und Na+ bringen 2) neu in Bezug auf die Spannungsabhängigkeit der apparenten Affinität von Glutamat sind. Die Untersuchung der vorstationären Ableitungen waren fruchtbar in Bezug auf a) die Ähnlichkeit des Transports, der durch EAAT4 katalysiert wird, zu anderen Glutamattransporter b) spezifische Parameter des Transports, wie den Unterschied in der Transportgeschwindigkeit c) die neuartige Kinetik der Anionenleitfähigkeit. Aus den Daten ergibt sich folgendes Bild über den Mechanismus des Transports. Die Substrate binden an EAAT4, im Vergleich zu den anderen Transportern, mit wesentlich höheren Km [ (0,6 ± 0,1)µM für Glutamat und (42,3 ± 5,2)mM für Na+]. Die Bindung von Glutamat, die schnell verläuft, ist, wie bei EAAT3, stark Na+ abhängig, genau wie die Leckleitfähigkeit, die ebenfalls durch Na+ aktiviert wird. Die folgenden glutamatabhängigen, vorstationären Reaktionen, inklusive der Translokation der Substrate verläuft wesentlich langsamer, als in anderen Transportersubtypen. Die Folge ist eine geringe Umsatzrate (<3 1/s) und daher ein geringer Transportstrom [(-3,6 ± 2,8)pA]. Die Daten zeigen, dass EAAT4 trotzallem denselben prinzipiellen Mechanismus, wie die anderen Subtypen folgt. Das Verhalten der Anionenleitfähigkeit zeigt allerdings erhebliche Unterschiede zu anderen Subtypen, da die Anionenleitfähigkeit durch negative Membranpotentiale inhibiert wird. Dies wird durch die Inhibierung der K+-Relokationsreaktion des Transporters erklärt. Zusammengenommen spricht die geringe Umsatzrate und die hohe apparente Affinität für Glutamat dafür, dass EAAT4 ein hochspezialisierter Transporter für die schnelle Pufferung von Glutamat und den langfristigen Transport von Glutamat bei niedrigen Konzentrationen ist. Im zweiten Teil dieser Arbeit wurde die Temperaturabhängigkeit des Glutamattransports durch EAAT3 untersucht. Die Temperaturabhängigkeit des Transports unter stationären Bedingungen zeigte interessante neue Ergebnisse. Die Ergebnisse lassen Aussagen zu bezüglich 1) der Thermodynamik der Bindung der Substrate und 2) der molekularen Natur bestimmter Teilreaktionen im Zyklus Die Bindung eines nicht-transportierbaren Glutamatanalogons zeigt, dass die Inhibitorbindung exotherm ist (H = 30,0 ± 3,3)kJ/mol. Die Bindung von Na+ an den unbeladenen Transporter ist im Gegensatz dazu nicht signifikant von der Temperatur abhängig mit H = (20,8 ± 21,5)kJ/mol. Es ist ebenfalls interessant, dass die Freie Enthalpie des Gesamtzyklus beiEAAT4 signifikant grösser ist als bei EAAT3, was in Übereinstimmung mit der höheren, apparenten Glutamataffinität ist [GEAAT4 = (35 ± 1)kJ/mol vs. .GEAAT3 = (30 ±1)kJ/mol]. Die Temperaturabhängigkeit der vorstationären Kinetik von EAAT3 enthüllt gleichfalls neue Ergebnisse. Zum einen ist die Bindung des Na+ Ions and den unbeladenen Transporter mit einer Konformationsänderung begleitet. Im Gegensatz dazu hat die Reaktion, die der Glutamatbindung zugeordnet wurde, nur eine moderate Aktivierungsenthalpie [H‡ = (39 ± 23 )kJ/mol], wie für eine diffusionskontrollierte Reaktion erwartet wird. Die nachfolgenden zwei langsameren Phasen des Transportstroms, die in der Literatur der Aktivierung der Anionenleitfähigkeit und der Glutamattranslokation zugeordnet wurden, sind mit hohen Aktivierungsenthalpien verbunden [H‡ = (121 ± 12)kJ/mol bzw. (94 ± 4)kJ/mol]. Dies bedeutet zum einen, dass zur Öffnung des Anionenkanals und der Translokation von Glutamat eine grössere Umstrukturierung des Transporters notwendig ist. Durch die hier gefundenen, neuen Daten für die Translokationsgeschwindigkeit bei physiologischen Temperaturen kann die Hypothese in Frage gestellt werden, die besagt, dass Glutamattransporter nicht schnell genug seien, um zur schnellen Entfernung des Glutamats nach der synaptischen Transmission beizutragen. Es scheint vielmehr so, dass bei physiologischen Temperaturen und Membranpotentialen, die Translokation von Glutamat hinreichend schnell verläuft.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments

More articles like this

Kinetics and mechanisms of glutamate transport acr...

on Annals of the New York Academy... 1980

L-glutamate transport in renal plasma membrane ves...

on Molecular and Cellular Biochem... Sep 25, 1981

Molecular mechanisms for proton transport in membr...

on Proceedings of the National Ac... January 1978
More articles like this..