Affordable Access

Publisher Website

Cytokine-Induced Expression of Nitric Oxide Synthase Results in Nitrosylation of Heme and Nonheme Iron Proteins in Vascular Smooth Muscle Cells

Authors
Journal
Experimental Cell Research
0014-4827
Publisher
Elsevier
Publication Date
Volume
214
Issue
1
Identifiers
DOI: 10.1006/excr.1994.1275
Disciplines
  • Biology
  • Chemistry
  • Medicine

Abstract

Abstract Nitric oxide synthase (NOS) catalyzes the synthesis of the biomediator, nitric oxide (NO), from L-arginine. We have analyzed NOS induction and activity in cultured rat vascular smooth muscle cells (SMC), which respond to NO by relaxation and inhibition of mitochondrial respiration. Both interferon-ϒ and tumor necrosis factor-α induced the expression of NOS mRNA and a combination of the two cytokines had a synergistic effect. An internal oligonucleotide complementary to murine macrophage NOS mRNA hybridized to polymerase chain reaction (PCR) products derived from SMC NOS but not bruin NOS. Direct sequencing of the PCR products showed a high degree of homology between inducible NOS from SMC and macrophages. Analysis of NOS-dependent nitrite production demonstrated that the enzyme requires NADPH as a cofactor but not calcium for its activity. Cytokine treatment resulted in the development of electron paramagnetic resonance (EPR) signals characteristic for nitrosyl complexes, indicating nitrosylation of SMC molecules by enzymatically synthesized NO. De novo NOS gene transcription and protein synthesis are required for the cytokine-induced protein nitrosylation since addition of actinomycin D and cycloheximide abolished the cytokine effect. At an early stage of cytokine treatment and when low doses of cytokines were used, the EPR signal was dominated by a triplet hyperfine structure typical for hemenitrosyl complexes. With increasing incubation time and/or cytokinc dose, the EPR spectra were gradually converted into a pattern resembling that of nonheme iron (11)—nitrosyl thiol complexes. Thereafter, the EPR signal shape no longer changed while the signal intensity increased quantitatively with NO synthesis, suggesting that considerable amounts of NO synthesized could be trapped in the cells by formation of nitrosyl complexes with intracellular molecules. Together, these results provide direct biochemical evidence for cytokine induction of NO synthesis and protein nitrosylation in SMC. This may represent an important second messenger system for cytokine effects on cellular metabolism in blood vessels.

There are no comments yet on this publication. Be the first to share your thoughts.