Affordable Access

Oligonucleotide-directed construction of mutations: a gapped duplex DNA procedure without enzymatic reactions in vitro.

Authors
Publication Date
Source
PMC
Disciplines
  • Chemistry
  • Medicine

Abstract

The gapped duplex DNA approach to oligonucleotide-directed construction of mutations (Kramer et al. 1984, Nucl. Acids Res. 12, 9441-9456) has been developed further. A procedure is described that makes in vitro DNA polymerase/DNA ligase reactions dispensable. Direct transfection of host bacteria with gdDNA molecules of recombinant phage M13 plus mutagenic oligonucleotide results in marker yields in excess of 50% (gap size 1640 nucleotides). An important feature incorporated into the mutagenic oligonucleotide is the presence of one or two internucleotidic phosphorothioate linkages immediately adjacent to the 5'-terminus. Automated preparation and biochemical properties of such compounds are described as well as their performance in oligonucleotide-directed mutagenesis. A systematic study of the following parameters influencing marker yield is reported: Gap size, length of oligonucleotide, chemical nature of oligonucleotide termini and heatshock temperature during transformation.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F