Affordable Access

Publisher Website

On the accessibility and selection of the initiator site of mRNA in protein synthesis

Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis
Publication Date
DOI: 10.1016/0005-2787(78)90203-4
  • Biology


Abstract The specificity of the cell-free system of Escherichia coli for mRNA was examined, and the “accessibility” of some natural and synthetic RNAs to the ribosomes was determined by measurement of AcPhe-tRNA and fMet-tRNA binding, AcPhe-puromycin and fMet-puromycin formation, and polypeptide synthesis. The E. coli system effectively initiates the translation of various synthetic RNAs with AcPhe-tRNA or fMet-tRNA under conditions optimal for the translation of viral RNA. Poly(A,G,U) is accessible to the ribosomes according to all of the above criteria. Poly(A,C,G,U), 23 S rRNA, R17 RNA, and MS2 RNA, on the other hand, show limited accessibility when tested for initiator tRNA binding, or for AcPhe-puromycin and fMet-puromycin formation. MS2 and R17 RNA, but not poly(A,C,G,U) and 23 S rRNA, show accessibility when measured by polypeptide synthesis. The results suggest that, except at initiator sites of natural mRNA, an RNA containing about equal amounts of all four bases is inaccessible to E. coli ribosomes for polypeptide synthesis. Rate constants obtained for fMet-tRNA binding with MS2 RNA, poly(A,G,U), and poly(C,G,U) indicate that the ribosomes do not have any special affinity for the viral RNA. Thus, the selection of the initiator site in protein synthesis may be critically determined more by the accessibility of the initiator codon than by ribosomal recognition of the site.

There are no comments yet on this publication. Be the first to share your thoughts.