Affordable Access

An artificial regulatory circuit for stable expression of DNA-binding proteins in a T7 expression system’

Authors
Publisher
Elsevier
Publication Date
Keywords
  • Microbiology & Cell Biology
Disciplines
  • Biology

Abstract

We had earlier overproduced the transcription activator protein C of bacteriophage Mu in a phage-T7 expression system. Although we achieved a high level of overproduction, the expression was not consistent. This could be due to the leaky expression of T7 RNA polymerase in the uninduced state. Introduction of pLysS, a plasmid encoding T7 lysozyme, a natural inhibitor of T7 RNA polymerase, resulted in consistent, but extremely low production of the C protein. To overcome this problem, we have devised an artificial regulatory circuit to obtain stabilised, consistent overproduction of C protein. The C-binding site was cloned downstream from the transcription start point of T7 lys. Upon induction, the C protein produced binds to its site with a very high affinity, possibly acting as a transcriptional roadblock for lys. This would overcome the inhibitory effect of T7 lysozyme on T7 RNA polymerase.

There are no comments yet on this publication. Be the first to share your thoughts.