Affordable Access

Mutational analysis of the octapeptide sequence motif at the NS1-NS2A cleavage junction of dengue type 4 virus.

Publication Date
  • Research Article
  • Biology


We have previously shown that proper processing of dengue type 4 virus NS1 from the NS1-NS2A region of the viral polyprotein requires a hydrophobic N-terminal signal and the downstream NS2A. Results from deletion analysis indicate that a minimum length of eight amino acids at the C terminus of NS1 is required for cleavage at the NS1-NS2A junction. Comparison of this eight-amino-acid sequence with the corresponding sequences of other flaviviruses suggests a consensus cleavage sequence of Met/Leu-Val-Xaa-Ser-Xaa-Val-Xaa-Ala. Site-directed mutagenesis was performed to construct mutants of NS1-NS2A that contained a single amino acid substitution at different positions of the consensus cleavage sequence or at the immediate downstream position. Three to eight different substitutions were made at each position. A total of 50 NS1-NS2A mutants were analyzed for their cleavage efficiency relative to that of the wild-type dengue type 4 virus sequence. As predicted, nearly all substitutions at positions P1, P3, P5, P7, and P8, occupied by conserved amino acids, yielded low levels of cleavage, with the exception that Pro or Ala substituting for Ser (P5) was tolerated. Substitutions of an amino acid at the remaining positions occupied by nonconserved amino acids generally yielded high levels of cleavage. However, some substitutions at nonconserved positions were not tolerated. For example, substitution of Gly or Glu for Gln (P4) and substitution of Val or Glu for Lys (P6) each yielded a low level of cleavage. Overall, these data support the proposed cleavage sequence motif deduced by comparison of sequences among the flaviviruses. This study also showed that in addition to the eight-amino-acid sequence, the amino acid immediately following the NS1-NS2A cleavage site plays a role in cleavage.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times