Affordable Access

Publisher Website

Elastic Wave Propagation in Stratified Media

Elsevier Science & Technology
DOI: 10.1016/s0065-2156(08)70331-4
  • Mathematics


Publisher Summary This chapter focuses on elastic wave propagation in stratified media. The development of the theory of elastic wave propagation in stratified media has been strongly influenced by the problems of seismic wave propagation and the nature of the seismograms recorded from earthquakes. For purely analytic developments of elastic wave propagation, the level of manageable algebraic complexity is reached in a model with one or two uniform layers overlying a uniform half space. This chapter shows how the excitation of elastic waves, within a horizontally stratified structure, can be conveniently developed in terms of reflection and transmission matrices. This procedure has allowed the construction of the full response of the medium or approximations with desired properties so that theoretical seismograms may be calculated for realistic distributions of elastic parameters. Although this development has been for isotropic media, nearly all the results apply directly to the case of full anisotropy if 3 × 3 reflection and transmission matrices allowing coupling between all wave types are employed. This development of the wavefield for both source and receiver within the stratification may be used for other classes of wave propagation.

There are no comments yet on this publication. Be the first to share your thoughts.