Affordable Access

Electrodeposition of Nanometer-Sized Ferric Oxide Materials in Colloidal Templates for Conversion of Light to Chemical Energy

Journal of Nanomaterials
Publication Date
  • Chemistry
  • Physics


Colloidal crystal templates were prepared by gravitational sedimentation of 0.5 micron polystyrene particles onto fluorine-doped tin oxide (FTO) electrodes. Scanning electron microscopy (SEM) shows that the particles were close packed and examination of successive layers indicated a predominantly face-centered-cubic (fcc) crystal structure where the direction normal to the substrate surface corresponds to the (111) direction. Oxidation of aqueous ferrous solutions resulted in the electrodeposition of ferric oxide into the templates. Removal of the colloidal templates yielded ordered macroporous electrodes (OMEs) that were the inverse structure of the colloidal templates. Current integration during electrodeposition and cross-sectional SEM images revealed that the OMEs were about 2  𝜇 m thick. Comparative X-ray diffraction and infrared studies of the OMEs did not match a known phase of ferric oxide but suggested a mixture of goethite and hematite. The spectroscopic properties of the OMEs were insensitive to heat treatments at 3 0 0 ∘ C . The OMEs were utilized for photoassisted electrochemical oxidation. A sustained photocurrent was observed from visible light in aqueous photoelectrochemical cells. Analysis of photocurrent action spectra revealed an indirect band gap of 1.85 eV. Addition of formate to the aqueous electrolytes resulted in an approximate doubling of the photocurrent.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times