Affordable Access

Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds

Authors
Journal
Analytica Chimica Acta
0003-2670
Publisher
Elsevier
Publication Date
Volume
819
Identifiers
DOI: 10.1016/j.aca.2014.02.004
Keywords
  • Metal-Organic Framework
  • Selectivity
  • Fluorescence
  • Sensor
  • Aromatic
Disciplines
  • Chemistry
  • Ecology
  • Geography
  • Mathematics

Abstract

Abstract The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N′N′-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH).

There are no comments yet on this publication. Be the first to share your thoughts.