Affordable Access

Elastic modulus of tree frog adhesive toe pads

Publication Date
  • Biology


Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-++m thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5GÇô15-áMPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4GÇô25-ákPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times

More articles like this

Elastic modulus of tree frog adhesive toe pads

on Journal of Comparative Physiol... Oct 01, 2011

Wet but not slippery: Boundary friction in tree fr...

on Journal of The Royal Society I... Oct 22, 2006

Structural correlates of increased adhesive effici...

on Journal of comparative physiol... November 2006
More articles like this..