Affordable Access

Publisher Website

Roles for cytoplasmic polyadenylation in cell cycle regulation.

Authors
Journal
Journal of Cellular Biochemistry
0730-2312
Publisher
Wiley Blackwell (John Wiley & Sons)
Publication Date
Volume
87
Issue
3
Identifiers
DOI: 10.1002/jcb.10300
Keywords
  • Amino Acid Sequence
  • Animals
  • Cell Cycle
  • Cytoplasm
  • Molecular Sequence Data
  • Nucleotidyltransferases
  • Poly A
  • Protein Biosynthesis
  • Rna
  • Messenger
Disciplines
  • Chemistry

Abstract

Polyadenylation of eukaryotic mRNAs in the nucleus promotes their translation following export to the cytoplasm and is an important determinant of mRNA stability. An additional level of control of gene expression is provided by cytoplasmic polyadenylation, which activates translation of a number of mRNAs important in orchestrating cell cycle events in oocytes. Recent studies indicate that cytoplasmic polyadenylation may be a mechanism of translational activation that is more widespread in eukaryotic cells. Here we discuss the roles of a recently identified family of nucleotidyl transferases (encoded by the cid1 gene family) in cell cycle regulation. To date, this family has been characterised mainly in yeasts, but it is conserved throughout the eukaryotes. Biochemical studies have indicated that a subset of members of this family function as cytoplasmic poly(A) polymerases targeting specific mRNAs for translation. This form of translational control appears to be particularly important for cell cycle regulation following inhibition of DNA synthesis.

There are no comments yet on this publication. Be the first to share your thoughts.