Affordable Access

Publisher Website

Involvement of Activation of PKR in HBx-siRNA-Mediated Innate Immune Effects on HBV Inhibition

Authors
Journal
PLoS ONE
1932-6203
Publisher
Public Library of Science
Publication Date
Volume
6
Issue
12
Identifiers
DOI: 10.1371/journal.pone.0027931
Keywords
  • Research Article
  • Biology
  • Immunology
  • Microbiology
  • Virology
  • Molecular Cell Biology
  • Medicine
  • Clinical Immunology
  • Gastroenterology And Hepatology
  • Liver Diseases
  • Infectious Hepatitis
  • Hepatitis B
  • Infectious Diseases
  • Viral Diseases
  • Hepatitis
Disciplines
  • Biology
  • Chemistry
  • Medicine

Abstract

RNA interference (RNAi) of virus-specific genes offers the possibility of developing a new anti-hepatitis B virus (anti-HBV) therapy. Recent studies have revealed that siRNAs can induce an innate immune response in vitro and in vivo. Here, HBVx (HBx) mRNA expression and HBV replication were significantly inhibited, followed by the enhancement of expression of type I interferons (IFNs), IFN-stimulated genes (ISG15 and ISG56) and proinflammatory cytokines after HepG2.2.15 cells were transfected with chemically synthesized HBx-siRNAs. Transfection with HBx-siRNAs also significantly increased expression of dsRNA-dependent protein kinase R (PKR) in HepG2.2.15 cells, followed by activation of downstream signaling events such as eukaryotic initiation factor 2α (eIF2-α). In PKR-over-expressing HepG2.2.15 cells, HBx-siRNAs exerted more potent inhibitory effects on HBV replication and greater production of type I IFNs. By contrast, the inhibitory effect of HBx-siRNAs on HBV replication was attenuated when PKR was inhibited or silenced, demonstrating that HBx-siRNAs greatly promoted PKR activation, leading to the higher production of type I IFN. Therefore, we concluded that PKR is involved in the innate immune effects mediated by HBx-siRNAs and further contributes to HBV inhibition. The bifunctional siRNAs with both gene silencing and innate immune activation properties may represent a new potential strategy for treatment of HBV.

There are no comments yet on this publication. Be the first to share your thoughts.