Affordable Access

Publisher Website

Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs

Biophysical Journal
Publication Date
DOI: 10.1016/s0006-3495(95)80223-7
  • Computer Science


A new Monte Carlo (MC) algorithm is proposed for simulating inextensible circular chains with finite twisting and bending rigidity. This new algorithm samples the relevant Riemann volume elements in a uniform manner, when the constraining potential vanishes. Simulations are performed for filaments comprising 170 subunits, each containing approximately 28 bp, which corresponds to a DNA length of 4770 bp. The bending rigidity is chosen to yield a persistence length, P = 500 A, and the intersubunit potential is taken to be a hard-cylinder potential with diameter d = 50 A. This value of d yields the same second virial coefficient as the electrostatic potential obtained by numerical solution of the Poisson-Boltzmann equation for 150 mM salt. Simulations are performed for unknotted circles and also for trefoil knotted circles using two different values of the torsional rigidity, C = (2.0 and 3.0) x 10(-19) dyne cm2. In the case of unknotted circles, the simulated supercoiling free energy varies practically quadratically with linking difference delta l. The simulated twist energy parameter ET, its slope dET/dT, and the mean reduced writhe /delta l for C = 3 x 10(-19) dyne cm2 all agree well with recent simulations for unknotted circles using the polygon-folding algorithm with identical P, d, and C. The simulated ET vs. delta l data for C = 2.0 x 10(-19) dyne cm2 agree rather well with recent experimental data for p30 delta DNA (4752 bp), for which the torsional rigidity, C = 2.07 x 10(-19) dyne cm2, was independently measured. The experimental data for p30 delta are enormously more likely to have arisen from C = 2.0 x 10(-19) than from C = 3.0 x 10(-19) dyne cm2. Serious problems with the reported experimental assessments of ET for pBR322 and their comparison with simulated data are noted. In the case of a trefoil knotted DNA, the simulated value, (ET)tre, exceeds that of the unknotted DNA, (ET)unk, by approximately equal to 1.40-fold at magnitude of delta l = 1.0, but declines to a plateau about 1.09-fold larger than (ET)unk when magnitude of delta l > or = 15. Although the predicted ratio, (ET)tre/(ET)unk approximately equal to 1.40, agrees fairly well with recent experimental measurements on a 5600-bp DNA, the individual measured ET values, like some of those reported for pBR322, are so large that they cannot be simulated using P = 500 A, d = 50 A, and any previous experimental estimate of C.

There are no comments yet on this publication. Be the first to share your thoughts.