Affordable Access

Publisher Website

Accelerating Multiple Scattering of Electrons by Ion Impact: Contribution to Molecular Fragmentation and Radiation Damages

Elsevier Science & Technology
DOI: 10.1016/s0065-3276(06)52011-8
  • Biology


Abstract Secondary electrons play an important role in transferring energy from swift, heavy charged particles to matter. Such electrons, when formed in biological tissues by high energy particle impact, significantly contribute to the fragmentation of small molecules and to single- and double-strand brakes in DNA. Knowledge about differential spectra of electrons emitted in collisions of decelerating swift ions is of vital importance for estimating ion impact radiation damages. In this work, we focus our interest to a specific ionization mechanism, the so-called Fermi-shuttle type acceleration. We show that this process can produce a significant enhancement in the emission of high energy secondary electrons. After a brief history of the study of Fermi-shuttle acceleration mechanisms in atomic collisions, we present the results of recent systematic experimental studies and follow the way of identifying and analyzing the multiple scattering components by the help of classical trajectory Monte-Carlo (CTMC) calculations. We think that this specific ionization mechanism can play a significant role in high-energy electron emission, and may contribute to radiation damages in biological tissues.

There are no comments yet on this publication. Be the first to share your thoughts.