Affordable Access

Publisher Website

Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England

Authors
Journal
Journal of Hydrology
0022-1694
Publisher
Elsevier
Publication Date
Volume
293
Identifiers
DOI: 10.1016/j.jhydrol.2004.01.017
Keywords
  • Distributed Hydrological Modelling
  • Hydraulic Modelling
  • Wetlands
Disciplines
  • Earth Science
  • Geography

Abstract

Abstract Hydrological modifications frequently result in wetland loss and degradation while wetland management, restoration and creation schemes rely upon further hydrological manipulations. These schemes can benefit from models which can accurately represent often complex wetland hydrological situations. Although the potential of the physically based, distributed model MIKE SHE to model wetlands has been demonstrated, a number of inadequacies in its channel flow component have been identified. These include difficulties in representing control structures and simulating inundation from channels. A coupling has been developed between MIKE SHE and the MIKE 11 hydraulic modelling system. This paper reports a coupled MIKE SHE/MIKE 11 model developed for a lowland wet grassland, the Elmley Marshes, in southeast England. Long term monitoring, supplemented by selected secondary sources, provided the necessary input, calibration and validation data. A procedure was developed to evaluate evaporation from ditch surfaces which could not be represented dynamically within MIKE 11. Two consecutive 18-month periods were used for model calibration and validation which were based upon comparisons of observed and simulated groundwater depths and ditch water levels. Model results were generally consistent with the observed data and reproduced the seasonal dynamics of groundwater and ditch water. The close association between flooding and both groundwater and ditch water levels was demonstrated. Topographic depressions are important for the initiation of flooding and are responsible for much of the shallow surface water in areas isolated from ditches. Deeper flooding occurs in areas which are inundated from these ditches. Results suggested that improvements could be made to the MIKE SHE bypass flow routine to enable it to more accurately represent macropore flow associated with soil cracking and swelling. Dynamic calculation of evaporation from ditch water surfaces would enhance the ability of the model to explore alternative water level management and climate change scenarios. The potential use of the model to investigate these scenarios is outlined.

There are no comments yet on this publication. Be the first to share your thoughts.