Affordable Access

Publisher Website

An updated view on the role of dopamine in myopia

Authors
Journal
Experimental Eye Research
0014-4835
Publisher
Elsevier
Volume
114
Identifiers
DOI: 10.1016/j.exer.2013.02.007
Keywords
  • Myopia
  • Dopamine
  • Ambient Illuminance
  • Outdoor Activity
  • Contrast Sensitivity

Abstract

Abstract A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers (“deprivation myopia”, DM) or negative lenses (“lens induced myopia”, LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose–response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments

More articles like this

Dopamine and myopia.

on Optometry and vision science :... December 1990

A far-sighted view of myopia.

on Nature Medicine August 1999

Role of the dopaminergic system in the development...

on Journal of Child Neurology December 2014

A new view of the role of dopamine receptors in th...

on Clinical and Experimental Phar... November 1995
More articles like this..