Affordable Access

Mdp1, a Saccharomyces Cerevisiae Gene Involved in Mitochondrial/Cytoplasmic Protein Distribution, Is Identical to the Ubiquitin-Protein Ligase Gene Rsp5

Publication Date
  • Investigations
  • Biology


Alteration of the subcellular distribution of Mod5p-I, a tRNA modification enzyme, member of the sorting isozyme family, affects tRNA-mediated nonsense suppression. Altered suppression efficiency was used to identify MDP genes, which, when mutant, change the mitochondrial/cytosolic distribution of Mod5p-I,KR6. MDP2 is the previously identified VRP1, which encodes verprolin, required for proper organization of the actin cytoskeleton. MDP3 is identical to PAN1, which encodes a protein involved in initiation of translation and actin cytoskeleton organization. We report here the cloning and characterization of wild-type and mutant MDP1 alleles and the isolation and characterization of a multicopy suppressor of mdp1 mutations. MDP1 is identical to RSP5, which encodes ubiquitin-protein ligase, and mdp1 mutations are suppressed by high copy expression of ubiquitin. All four characterized mdp1 mutations cause missense changes located in the hect domain of Rsp5p that is highly conserved among ubiquitin-protein ligases. In addition to its well-known function in protein turnover, ubiquitination has been proposed to play roles in subcellular sorting of proteins via endocytosis and in delivery of proteins to peroxisomes, the endoplasmic reticulum and mitochondria. mdp1, as well as mdp2/vrp1 and mdp3/pan1 mutations, affect endocytosis. Further, mdp1 mutations show synthetic interactions with mdp2/vrp1 and mdp3/pan1. Identification of MDP1 as RSP5, along with our previous identification of MDP2/VRP1 and MDP3/PAN1, implicate interactions of the ubiquitin system, the actin cytoskeleton and protein synthesis in the subcellular distribution of proteins.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times