Affordable Access

Structural aspects of the sarcoplasmic reticulum K+ channel revealed by gallamine block.

Authors
Publication Date
Source
PMC
Keywords
  • Research Article

Abstract

We have studied single-channel conductance fluctuations of K+ channels present in the sarcoplasmic reticulum (SR) membrane systems of rabbit cardiac and skeletal muscle. K+ conductance through the channels is reversibly blocked by gallamine. Conductance block occurs only from the trans side of the channel and is resolved as a smooth reduction in the open state conductance. At a fixed K+ concentration, conduction decreases with increasing gallamine concentration and the data can be fitted to a single-site inhibition scheme. The degree of block seen at a constant gallamine concentration decreases as K+ concentration is increased, indicating competition between gallamine and K+. Gallamine block is voltage dependent, the degree of block increasing with increasing negative holding potential. Quantitative analysis of block yields a zero voltage dissociation constant of 55.3 +/- 16 microM and an effective valence of block of 0.93 +/- 0.12. We conclude that gallamine blocks by interacting with a site or sites located at an electrical distance 30-35% into the voltage drop from the trans side of the channel. This site must have a cross-sectional area of at least 1.2 nm2. The results of this study have been used to modify and extend our view of the structure of the channel's conduction pathway.

There are no comments yet on this publication. Be the first to share your thoughts.