Affordable Access

Publisher Website

Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia

Authors
Journal
Ecological Modelling
0304-3800
Publisher
Elsevier
Publication Date
Volume
221
Issue
8
Identifiers
DOI: 10.1016/j.ecolmodel.2009.12.023
Keywords
  • Feedforward Neural Network
  • Modeling
  • Dissolved Oxygen
  • Reservoir
Disciplines
  • Computer Science

Abstract

Abstract The objective of this study is to develop a feedforward neural network (FNN) model to predict the dissolved oxygen in the Gruža Reservoir, Serbia. The neural network model was developed using experimental data which are collected during a three years. The input variables of the neural network are: water pH, water temperature, chloride, total phosphate, nitrites, nitrates, ammonia, iron, manganese and electrical conductivity. Sensitivity analysis is used to determine the influence of input variables on the dependent variable. The most effective inputs are determined as pH and temperature, while nitrates, chloride and total phosphate are found to be least effective parameters. The Levenberg–Marquardt algorithm is used to train the FNN. The optimal FNN architecture was determined. The FNN architecture having 15 hidden neurons gives the best choice. Results of FNN models have been compared with the measured data on the basis of correlation coefficient ( r), mean absolute error (MAE) and mean square error (MSE). Comparing the modelled values by FNN with the experimental data indicates that neural network model provides accurate results.

There are no comments yet on this publication. Be the first to share your thoughts.