Affordable Access

Publisher Website

Predation byCallinectes sapidus(Rathbun) withinSpartinaalterniflora(Loisel) marshes

Journal of Experimental Marine Biology and Ecology
Publication Date
DOI: 10.1016/0022-0981(86)90156-5
  • Callinectes Sapidus
  • Spartina Alterniflora
  • Geukensia Demissa
  • Littorina Irrorata
  • Fundulus Similis
  • Predation


Abstract This study examined predation by the blue crab, Callinectes sapidus Rathbun, within intertidal Spartina alterniflora (Loisel) marshes of Dauphin Island, Alabama. Species and size preferences displayed by the predator when foraging within the marsh were investigated using nektonic, epifaunal, and infaunal prey populations including Fundulus similis Baird and Girard, Littorina irrorata Say, and Geukensia demissa Dillwyn. Short-term field experiments involving the use of predator inclusion cages, in which the relative abundances of all prey species and the density of macrophyte vegetation were manipulated, indicated that mean mortality differed significantly among species. Blue crabs exhibited a distinct species preference for Littorina, and to a lesser extent, for Fundulus. However, the predator rarely choses infaunal individuals. Within predator inclusion cages, size selection by the crabs among three size classes of each prey was evident for Littorina and Fundulus but not for Geukensia. Blue crabs tended to select intermediate-sized snails and large fish while not exhibiting a size preference for infaunal bivalves. In the marsh, mean percentage of the Littorina population within the 14–18 mm size class exhibited an increased mortality as compared to two other size classes, which was negatively correlated with increasing tidal height. Such a relationship may have been due to a decreasing gradient of crab predation associated with increasing tidal height. Geukensia size class distributions showed little evidence of differences along the tidal height gradient. No data are available for Fundulus, a mobile species which would not experience such differential predation along a marsh gradient. In comparing crab predation patterns among prey species, it is apparent that Callinectes utilizes prey species differentially. Such differential utilization may be based on optimization of energy yield and minimization of energy expenditure. Thus, the preference of blue crabs for nektonic and epifaunal prey is hypothesized to be the result of a smaller energy expediture as a result of the crab's visual evaluation of these prey. Infaunal prey species (e.g., Geukensia) require a greater energy investment because of the necessity of excavating the prey item. Such prey also allow little selection by size because of being cryptic.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times