Affordable Access

Publisher Website

Impact of gravitation on gaseous pollutant source identification

Chinese Journal of Aeronautics
DOI: 10.1016/j.cja.2013.02.002
  • Experiment
  • Gaseous Pollutant Source Identification
  • Gravitational Field
  • Location Probability
  • Synergy Degree Of Velocity Fields
  • Ventilated Enclosed Space
  • Computer Science
  • Mathematics
  • Physics


Abstract It is necessary to identify a gaseous pollutant source rapidly so that prompt actions can be taken, but this is one of the difficulties in the inverse problem areas. In this paper, an approach to identifying a sudden continuous emission pollutant source based on single sensor information is developed to locate a source in an enclosed space with a steady velocity field. Because the gravity has a very important influence on the gaseous pollutant transport and the source identification, its influence is analyzed theoretically and a conclusion is drawn that the velocity of fluid is a key factor to effectively help weaken the gravitational influence. Further studies for a given 2-D case by using the computational fluid dynamics (CFD) method show that when the velocity of inlet is less than one certain value, the influence of gravity on the pollutant transport is very significant, which will change the velocity field obviously. In order to quantitatively judge the practical applicability of identification approach, a synergy degree of the velocity fields before and after a source appearing is proposed as a condition for considering the influence of gravity. An experimental device simulating pollutant transmission was set up and some experiments were conducted to verify the practical application of the above studies in the actual gravitational environment. The results show that the proposed approach can successfully locate the sudden constant source when the experimental situations meet the identified conditions.

There are no comments yet on this publication. Be the first to share your thoughts.