Affordable Access

Publisher Website

Segregation of cauliflower mosaic virus symptom genetic determinants

Authors
Journal
Virology
0042-6822
Publisher
Elsevier
Publication Date
Volume
172
Issue
2
Identifiers
DOI: 10.1016/0042-6822(89)90187-6
Disciplines
  • Biology
  • Engineering

Abstract

Abstract We have created a series of hybrid cauliflower mosaic virus (CaMV) genomes between a severe virus strain (Cabb B-JI) and a mild strain (Bart 1) to map the virus genetic loci responsible for specific systemic symptom characters produced in infected turnip plants. Recombinants were generated in vivo by recombinational rescue and in vitro by restriction enzyme fragment exchange. On infection, hybrids induced either parental (wild-type) symptoms or segregated parental characters. Some of the engineered hybrid genomes produced novel symptomatic effects not observed in either of the parental strains whilst others reverted to express parental symptom characters following passaging. Determinants defining differences between the two CaMV strains in respect of four specific symptom characters were delimited to separate genome regions. A locus involved in determining the rate of spread of systemic vein clearing symptoms mapped to a region containing part of gene VII and gene I (nts 109–780). This phenomenon is consistent with the putative involvement of the CaMV gene I product in mediating virus movement within infected plants. Determinants influencing the degree of leaf chlorosis were located in a separate genome domain encompassing part of gene VI together with the large intergenic region and part of gene VII (nts 6103-90). Determinants controlling timing of initial systemic symptom appearance were mapped to a region between nts 2150 and 4438 containing part of gene III, gene IV, and part of gene V. Plant stunting was influenced by loci in at least two separate regions, one containing parts of gene I and II, and a second within the reverse transcriptase gene (V). We conclude that symptoms produced by CaMV infection can be subdivided into individual characters, the genetic determinants of which segregate to different virus genetic loci and are not restricted to a single gene product.

There are no comments yet on this publication. Be the first to share your thoughts.