Affordable Access

Publisher Website

Potential output pathways for agonistic-like responses resulting from the GABAAblockade of the torus semicircularis dorsalis in weakly electric fish,Gymnotus carapo

Brain Research
Publication Date
DOI: 10.1016/j.brainres.2006.03.082
  • Electric Fish
  • Agonistic Behavior
  • Torus Semicircularis Dorsalis
  • Pacemaker Nucleus
  • Reticular Formation
  • Tract Tracing


Abstract The purpose of this study is to examine the pathways involved in the electromotor (electric organ discharge interruptions) and skeletomotor responses (defense-like) observed by blockade of GABAergic control of the torus semicircularis dorsalis (TSd) of the awake weakly electric fish Gymnotus carapo, described in a former study. Microinjection of NMDA (5 mM) into the pacemaker nucleus (PM) through a guide cannula previously implanted caused a prolonged interruption of the electric organ discharge (EOD) intermingled with reduction in frequency, similar to that described for TSd GABA A blockade, but without noticeable skeletomotor effects. The EOD alterations elicited by bicuculline microinjections (0.245 mM) into the TSd could be blocked or attenuated by a previous microinjection of AP-5 (0.5 mM), an NMDA antagonist, into the PM. Labeled terminals are found in the nucleus electrosensorius (nE) after injection of the biotinylated dextran amine (BDA) tracer into the TSd and into the sublemniscal prepacemaker nucleus (SPPn) subsequent to the tracer injection into the nE. Defense-like responses but not EOD interruptions are observed after microinjections of NMDA (5 mM) into the rhombencephalic reticular formation (RF), where labeled terminals are seen after BDA injection into the TSd and somata are filled after injection of the tracer into the spinal cord. In this last structure, marked fibers are seen subsequent to injection of BDA into the RF. These results suggest that two distinct pathways originate from the torus: one for EOD control, reaching PM through nE and SPPn, and the other one for skeletomotor control reaching premotor reticular neurons. Both paths could be activated by toral GABA A blockade.

There are no comments yet on this publication. Be the first to share your thoughts.