Affordable Access

Publisher Website

Teleost fish scales amongst the toughest collagenous materials

Journal of the Mechanical Behavior of Biomedical Materials
DOI: 10.1016/j.jmbbm.2014.09.025
  • Fish Scales
  • Collagen
  • Toughness
  • Process Zone
  • Crack Bridging
  • Bio-Inspired Materials
  • Biology
  • Design
  • Engineering
  • Physics


Abstract Fish scales from modern teleost fish are high-performance materials made of cross-plies of collagen type I fibrils reinforced with hydroxyapatite. Recent studies on this material have demonstrated the remarkable performance of this material in tension and against sharp puncture. Although it is known that teleost fish scales are extremely tough, actual measurements of fracture toughness have so far not been reported because it is simply not possible to propagate a crack in this material using standard fracture testing configurations. Here we present a new fracture test setup where the scale is clamped between two pairs of miniature steel plates. The plates transmit the load uniformly, prevent warping of the scale and ensure a controlled crack propagation. We report a toughness of 15 to 18kJm−2 (depending on the direction of crack propagation), which confirms teleost fish scales as one of the toughest biological material known. We also tested the individual bony layers, which we found was about four times less tough than the collagen layer because of its higher mineralization. The mechanical response of the scales also depends on the cohesion between fibrils and plies. Delamination tests showed that the interface between the collagen fibrils is three orders of magnitude weaker than the scale, which explains the massive delamination and defibrillation observed experimentally. Finally, simple fracture mechanics models showed that process zone toughening is the principal source of toughening for the scales, followed by bridging by delaminated fibrils. These findings can guide the design of cross-ply composites and engineering textiles for high-end applications. This study also hints on the fracture mechanics and performance of collagenous materials with similar microstructures: fish skin, lamellar bone or tendons.

There are no comments yet on this publication. Be the first to share your thoughts.