Affordable Access

Hyperpolarized 1H NMR employing low γ nucleus for spin polarization storage

American Chemical Society
Publication Date
  • Biology
  • Medicine


The PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment)(1, 2) and DNP (Dynamic Nuclear Polarization)(3) methods efficiently hyperpolarize biologically relevant nuclei such as 1^H, (31)^P, (13)^C, (15)^N achieving signal enhancement by a factor of ~ 100000 on currently utilized MRI scanners. Recently, many groups have demonstrated the utility of hyperpolarized MR in biological systems using hyperpolarized (13)^C biomarkers with a relatively long spin lattice relaxation time T_1 on the order of tens of seconds.(4-7) Moreover, hyperpolarized (15)^N for biomedical MR has been proposed due to even longer spin lattice relaxations times.(8) An additional increase of up to tens of minutes in the lifetime of hyperpolarized agent in vivo could be achieved by using the singlet states of low gamma (γ) nuclei.(9) However, as NMR receptivity scales as γ^3 for spin 1/2 nuclei, direct NMR detection of low γ nuclei results in a lower signal-to-noise ratio compared to proton detection. While protons are better nuclei for detection, short spin lattice relaxation times prevent direct 1^H hyperpolarized MR in biomedical applications.

There are no comments yet on this publication. Be the first to share your thoughts.