Affordable Access

Conformational Preferences of trans-1,2- and cis-1,3- Cyclohexanedicarboxylic Acids in Water and Dimethyl Sulfoxide as a Function of the Ionization State As Determined from NMR Spectroscopy and Density Functional Theory Quantum Mechanical Calculations

Authors
Publisher
American Chemical Society
Publication Date
Disciplines
  • Mathematics

Abstract

The populations of diaxial (aa) and diequatorial (ee) conformers of trans-1,2- and cis-1,3-cyclohexanedicarboxylic acids (CDCAs; 1 and 2, respectively) and their salts were determined in water and dimethyl sulfoxide (DMSO) solutions from vicinal proton–proton NMR J couplings (3J_(HH)). Optimized geometries and free energies for these compounds were obtained at the M06-2X/cc-pVTZ(-f)++ level. Although carboxylic acid groups in cyclohexane rings are generally believed to be far more stable (~2 kcal/mol) in equatorial than axial positions, this investigation demonstrated that an aa conformation (normally assumed to be completely insignificant for these compounds) can be favored depending on the medium and ionization state: strong ee preferences (>90%) were observed in water and DMSO for both diacids and their salts, except for the dianion of 1 in DMSO, which was found to be substantially aa (~57%). The possibility of intramolecular hydrogen bonding (H-bonding) was also investigated; the ratios of the ionization constants (K_1/K_2) indicated an absence of intramolecular H-bonding because K_1/K_2 « 10^4 (a standard criterion for non-H-bonding in dicarboxylic acids) for both 1 and 2 in water and also for 2 in DMSO. For 1, K_1/K_2 increased drastically in DMSO (K_1/K_2 = 4 × 10^6), where ^3J_(HH) and the ratio K_1/K_E = 10, K_E being the acidity constant of the monomethyl ester of 1, indicated the formation of an intramolecular H-bond for the monoanion in this solvent. An explanation for the observation of compact dianions in solution in terms of the generalized Born equation is also provided.

There are no comments yet on this publication. Be the first to share your thoughts.