Affordable Access

Deriving Safety Cases from Automatically Constructed Proofs

Publication Date
  • Computer Science
  • Mathematics


Formal proofs provide detailed justification for the validity of claims and are widely used in formal software development methods. However, they are often complex and difficult to understand, because the formalism in which they are constructed and encoded is usually machine-oriented, and they may also be based on assumptions that are not justified. This causes concerns about the trustworthiness of using formal proofs as arguments in safety-critical applications. Here, we present an approach to develop safety cases that correspond to formal proofs found by automated theorem provers and reveal the underlying argumentation structure and top-level assumptions. We concentrate on natural deduction style proofs, which are closer to human reasoning than resolution proofs, and show how to construct the safety cases by covering the natural deduction proof tree with corresponding safety case fragments. We also abstract away logical book-keeping steps, which reduces the size of the constructed safety cases. We show how the approach can be applied to the proofs found by the Muscadet prover.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times