Affordable Access

Publisher Website

Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests

Ecological Modelling
Publication Date
DOI: 10.1016/j.ecolmodel.2010.01.007
  • Artificial Neural Networks
  • Boosted Regression Trees
  • Forest Site Classification
  • Generalized Additive Models
  • Multi-Criteria Decision Analysis
  • Multiple Linear Regression
  • Predictive Modelling
  • Biology
  • Computer Science
  • Ecology
  • Geography


Abstract Forestry science has a long tradition of studying the relationship between stand productivity and abiotic and biotic site characteristics, such as climate, topography, soil and vegetation. Many of the early site quality modelling studies related site index to environmental variables using basic statistical methods such as linear regression. Because most ecological variables show a typical non-linear course and a non-constant variance distribution, a large fraction of the variation remained unexplained by these linear models. More recently, the development of more advanced non-parametric and machine learning methods provided opportunities to overcome these limitations. Nevertheless, these methods also have drawbacks. Due to their increasing complexity they are not only more difficult to implement and interpret, but also more vulnerable to overfitting. Especially in a context of regionalisation, this may prove to be problematic. Although many non-parametric and machine learning methods are increasingly used in applications related to forest site quality assessment, their predictive performance has only been assessed for a limited number of methods and ecosystems. In this study, five different modelling techniques are compared and evaluated, i.e. multiple linear regression (MLR), classification and regression trees (CART), boosted regression trees (BRT), generalized additive models (GAM), and artificial neural networks (ANN). Each method is used to model site index of homogeneous stands of three important tree species of the Taurus Mountains (Turkey): Pinus brutia, Pinus nigra and Cedrus libani. Site index is related to soil, vegetation and topographical variables, which are available for 167 sample plots covering all important environmental gradients in the research area. The five techniques are compared in a multi-criteria decision analysis in which different model performance measures, ecological interpretability and user-friendliness are considered as criteria. When combining these criteria, in most cases GAM is found to outperform all other techniques for modelling site index for the three species. BRT is a good alternative in case the ecological interpretability of the technique is of higher importance. When user-friendliness is more important MLR and CART are the preferred alternatives. Despite its good predictive performance, ANN is penalized for its complex, non-transparent models and big training effort.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times